
©
 2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker 1

Turbo Charge CPU
Utilization in Fork/Join

Using the
ManagedBlocker

Dr Heinz M. Kabutz  
Last Updated 2017-01-24

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

Regular

2

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

ManagedBlocker

3

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Number sequence named after Leonardo of Pisa
– F0 = 0
– F1 = 1
– Fn = Fn-1 + Fn-2

l Thus the next number is  
equal to the sum of the  
two previous numbers

– e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21, …

l The numbers get large very quickly

Speeding Up Fibonacci

4

8

13
21

2 3

5

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Taking our recursive definition
– F0 = 0, F1 = 1
– Fn = Fn-1 + Fn-2

l Our first attempt writes a basic recursive function

l But this has exponential time complexity
– f(n+10) is 1000 slower than f(n)

First attempt at writing a Fibonacci Method

5

public long f(int n) {
 if (n <= 1) return n;
 return f(n-1) + f(n-2);
}

8

13
21

2 3

5

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Instead of a recursive method, we use iteration:

l This algorithm has linear time complexity
– Solved f(1_000_000_000) in 1.7 seconds

• However, the numbers overflow so the result is incorrect
• We can use BigInteger, but its add() is also linear, so time is quadratic
• We need a better algorithm

2nd Attempt at Coding Fibonacci

6

public static long f(int n) {
 long n0 = 0, n1 = 1;
 for (int i = 0; i < n; i++) {
 long temp = n1;
 n1 = n1 + n0;
 n0 = temp;
 }
 return n0;
} 8

13
21

2 3

5

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Dijkstra noted the following formula for Fibonacci
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Logarithmic time complexity and can be parallelized
– Java 8 uses better BigInteger multiply() algorithms

• Karatsuba complexity is O(n1.585)
• 3-way Toom Cook complexity is O(n1.465)
• Previous versions of Java had complexity O(n2)
• Unfortunately multiply() in BigInteger is only available

single-threaded - we’ll fix that later

3rd Attempt Dijkstra's Sum of Squares

7

8

13
21

2 3

5

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l We implement this algorithm using BigInteger
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

Demo 1: Dijkstra’s Sum of Squares

8

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l “Heinz’s Happy Hour Recordings”
– Sign up tonight for 12 months free listening worth $239.40

l http://tinyurl.com/javada1

Thank You for Listening to me

9

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l We can parallelize by using common Fork/Join Pool

l Next we fork() the 1st task, do the 2nd and then join 1st

Demo 2: Parallelize Our algorithm

10

private final class FibonacciTask extends RecursiveTask<BigInteger> {
 private final int n;
 private FibonacciTask(int n) {
 this.n = n;
 }
 protected BigInteger compute() {
 return f(n);
 }
}

 FibonacciTask fn_1Task = new FibonacciTask(n - 1);
 fn_1Task.fork();
 BigInteger fn = f(n);
 BigInteger fn_1 = fn_1Task.join();

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Using principles from demo 2, we now parallelize
methods in
eu.javaspecialists.performance.math.BigInteger

– multiplyKaratsuba()
– multiplyToomCook3()
– squareKaratsuba()
– squareToomCook3()

Demo 3: Parallelize BigInteger

11

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l Dijkstra's Sum of Squares needs to work out some
values several times. Cache results to avoid this.

Demo 4: Cache Results

12

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l We make sure we implement a “reserved caching
scheme” where if one thread says he wants to
calculate some value, others would wait

– e.g. have a special BigInteger that signifies RESERVED
• First thing a task would do is check if map contains that
• If it doesn’t, it puts it in and thus reserves it
• If it does, it waits until the task is done and uses that value

Demo 5: Reserved Caching Scheme

13

©
 2012-2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker

l ForkJoinPool is configured with desired parallelism
– Number of active threads
– ForkJoinPool mostly used with CPU intensive tasks

l If one of the FJ Threads has to block, a new thread
can be started to take its place

– This is done with the ManagedBlocker

l We use ManagedBlocker to keep parallelism high

Demo 6: ManagedBlocker

14

©
 2017 H

einz K
abutz, A

ll R
ights R

eserved
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker 15

Heinz Kabutz
heinz@kabutz.net

http://tinyurl.com/javada1

